
"..,,

.....-,, "11.... / "\

RESEARCH & APPLIC_. ONS

.Y

SYMPOSIUM '92 "".....

N95- 14161

A GENERIC ARCHITECTURE MODEL FOR SI CE DATA SYSTEMS

RICHARD B. WRA Y

ABSTRACT

A Space Generic Open Avionics Architecture (SGOAA) was created for the NASA, to be the basis for

an open, standard generic architecture for the entities in spacecraft core avionics. Its purpose is to be

tailored by NASA to future space program avionics ranging from small vehicles such as Moon Ascent/

Descent Vehicles to large vehicles such as Mars Transfer Vehicles or Orbiting Stations. This architec-

ture standard consists of several parts: (1) a system architecture, (2) a generic processing hardware

architecture, (3) a six class architecture interface model, (4) a system services functional subsystem

architecture model, and (5) an operations control functional subsystem architecture model.

This paper describes the SGOAA model. It includes the definition of the key architecture require-

ments; the use of standards in designing the architecture; examples of other architecture standards;

identification of the SGOAA model; the relationships between the SGOAA, POSIX and OSI models;

and the generic system architecture. Then the six classes of the architecture interface model are
summarized. Plans for the architecture are reviewed.

BIOGRAPHY

Richard B. Wray has a dual MS/MBA in Systems Management, Acquisition, and Contracting; a MBA

with Distinction Honors in General Management; a MS in Systems Engineering and a BS in Math-
ematics. He is the Vice President-Technical of the National Council on Systems Engineering

(NCoSE) Texas Gulf Coast Chapter, and Chairman of the NCoSE Systems Engineering Process

Working Group to define a nationally recognized systems engineering process.

Mr. Wray has been with Lockheed Corporation for over eight years as an Advanced Systems Engineer

responsible for developing and implementing plans, performing systems engineering and analysis, and

implementing systems. He is leading the definition of a Space Generic Avionics architecture and

simulation using advanced computer aided systems engineering (CASE) Tools. Prior to this, he

performed and led analyses of system operational concepts, functional and performance requirements,

hardware/software trade-offs and system timelines for advanced avionics systems and architectures.

Mr. Wray was the lead software systems engineer for the definition and development of a software

system architecture, software analyses and the DoD-STD-2167A specifications for an avionics

subsystem and its interfaces to other avionics on the Advanced Tactical Fighter.

Notes:

\

_Ln3tn" O_T/, svqJ_lad _Kl_R114pR

Overview

SPACE GENERIC OPEN

ARCHITECTURE

(SGOAA)

Lockheed

AVIONICS

for the Mission and Safety Critical Systems
Symposium

28 October 1992

Dick Wray
John Stovall

What we are trying to do

What is an architecture reference model

What is the Space Generic Open Avionics

Architecture (SGOAA) Model

Summary

Acknowledgements

The architecture presented here was developed by David Pruett of

NASA's Johnson Space Center, Dick Wray and John Stovall of the
Lockheed Engineering and Sciences Company (LESC). Additional

support was provided by Ben Doeckel of LESC.

IGOAL: TO CREATE AN ARCHITECTURE BLUEPRINT|

Notes:

f \
- What Are We Trying to Do?

....... 0., 0,,,,_ Lockheed

• Objectives for developing an Architecture RMerence Model:

O Provide an advanced architecture model as • reference for
starting systems design

O Use standard• for architecture; applying interface standards Is
implementation specific based on miseion requirements

O Provide generic, atomic data sym functions for reusing
softwero and hardware technology In data system design

• Results to dato:

0 Generic System Architecture with explicitly identified functional
blocks and Interfmcee

0 Generic Functional Architecfure with expUcitly IdontJfbd
generic, atomic function• for Space Dm System software

0 Archlfecture M_ Model wllh concept acid explicltJy defined
Interface class structure

0 Potential standards Identified for uas with the architecture

What is an Architecture Reference Model?

Architecture

O A set of black boxes, interfaces between the black boxes and
interfaces from them to the external environment

O All functions and performance defined at the interfaces between the
black boxes

O Software =black boxes" as well as hardware black boxes

Physical Interfaces

O Interfaces identified with physical connectivity between black boxes
•" (hardware and software)

O Interfaces handle signal and data flow between the black boxes

Logical Interfaces

O Interfaces Identified with the meaning of data passed between two
black boxes where one is the originator and one is the user of the data

O Information exchange can crose many physical interfaces for one
logical interface, and therefore cannot be identified with any one
physical interface

2

/ What is the Generic

System Architecture Model ?
_TA _$I'E_ OEpA_r_4ENT Lockheed

CORE NETWORK(e)

Pewer !::! DIIpIlif • ::_:" ::::::

|_ General Purpose _iii
:i_'c'.%' ,c,, '"'::i

Ii_!:,", Applicatiorm ;._;:_:

i:i::i:i:i:::i: Opo+,i..A, ::: op.,,i... ::::::::::::::::::::::::: iil!ii::'..... ======================...... ::::::::::

:i_i;[;;!;;;_! i ;i;!_!!!i!_;;!_!iiii!!i:i|!iii!Applications i:: , ,. "' f_ii!i Ci:_ i:i]
liiiiiii!i!_ I!iNApplications l;_i:]

t__i li::_:: !!i!iiiiii!;;;;;_?ii_i_!ii!!i_,,.'..?i_!i;::;i_::!;_it

.......l'" _:"_:_:_ _..,._::;.- i_i i

LOCAL COMIdUNICATION_

Notes:

\

J

• The generic and open system architecture proposed consists of
processors which are standard, processors which can be tailored to

users applications and missions needs, multiple communications
mechanisms, and specialized hardware operating over
standardized interfaces to the processors which manipulate the
data they receive or provide.

• There are three types of processors interconnected by two types of
communications. The processors provided in the architecture are
the General Avionics Processor (GAP) for general purpose

processing, the Special Avionics Processor (SAP) for specialized
processing support, the Embedded Processor (EP) for the execution
of high speed processing witin the sensor and effector devices.

• The communications provided are two types: core networks for
interconnecting sets of general processors or nodes, and local
communications for interconnecting EPs and SAPs with their
supported GAPs and general purpose processing applications.

• There are sensors and effectors which can either interact directly

with the main processors (the GAPs) or indirectly through the EPs
bLdlt into the sensors and effectors (if applicable).

3

Model

Lockheed

1 Hardware-to-Hardware Physical

• Hatdwar_ Physics! It3tetfaces - D4rect Due Co.mec_on8, Memory Ch|p Structure

2 Hardware-to-System Software Physical

ql, _l_rdwate Rocjh_tersTo Soft,care S_rv|oe D,tlvem • Phy.k_al Inter

3 System Soflware-to-Soflware (Local) Phyoicsl

@ OperMing Sy._tem to other _ Code • Phyl_.c.a| intDrfeceo between Send,co Cede

4 System Software-to-System Software Logical

• ._y_m .._._rv_.e_ t_ .QIhK .':_.rvio,_ . L.ogic_! O.tt,, Tr_mdem from .@,_urce to. tJm,¢ ._,,wv_r.e

5 System Softwsre-to-Appllc4tlons Software Physical

@ Sysl*_'n Ser_|cee to Locat Ap_lcatkxm - Physical inlorfactm betweet! Code Sets

6 Applications Software-to-Applications Software Logical

4) Between Softw.lre Appllr_ons .- Logicnl Dell Trnnsfecs from Source to Usm'

Betwee_ S'/stems • Locjjoal Inlerfacms For O_;emll Commmnd And Control

"Miss|o_t Opetat]otmJ Layer)

Notes:

• The architecture interface model focuses on logical and physical interfaces to isolate and enable

specifications of effective interfaces. Logical interfaces are those oonnecting elements which
provide information with those needing it; these are "ought to" type interfaces not real interfaces.

So hardware logical does not exist becatme either it connects or it does not, no "ought to" is

involved. This progression from hardware to system logical interfaces moves from the things
people can touch and feel to the conceptual/logicaL Software physical interfaces are those
interfaces between two sets of software code,e.g., one cede package calling another.

• Class I, Hardwm-to-Hardware Interfaces (Physical), addresses hardware component modularity
and portability, and ma/ntainabil/ty and technology upgradabil/ty of platform hardware over
extended space avionics life cycles. These hardware interface standardJ must be defln/tive as to
the software driver interface requirements needed to communicate with that hardware.

• Class 2, Hardware-to-System Software Interface (Physical), is the Operating System (08) hardware
driver software to invoke platform services _ to the Application Platform. Each of these

standards must specify the software interface bindinl requirements for "plugging" a driver into the
OS.

• Class 3, System Software-to-Software (Local Physical), is provides access form the operating system
to all other platform services and applications in support of application portability.

• Class 4, System Software.to-System Software Interfaces (Logical), is the internal interface for
transfer of data between Application Platform Data System Services. For example, this is the

logical interface between the Date Base Manager in an Application Platform commun/cating with
the Data Base Manager in another platform.

• Class 5, System Software-to-Application Software Interfaces (Physical), is defined primarily to
support Application Software portability.

• Class 6, Application Sottware-to-Application Software (Logical), consists of application.to-
application software interfaces for both local/node and other systems. AppUcations sottware

interfaces are the internal interfaces for transfer of data between Application Software within an ,_/
Application Platform. These are aLso the external logical interfaces between Application Software
on the Application Platform with Application Software on other Application Platforms.

4

S Hardware-to-Hardware
Physical Interfaces

__m_R.alcr OATAlrc_l_lB OEI_mrMD4T

Class 1. Hardware ADDlication Platform

SPECIAL GENERAL
EMBEDOED AVIONICS AVIONICS

PROCES_K)R PROCESSOR PROCESSOR

(EP) (SAP) (GAP)

Lockheed

(_ • }nteffNe $1ancls_

• Plugs Identify Interface Standard Constraints
• GAP based on Internal interface Standard Constraints

Notes:

The hardware to hardware physicalinterfacesare shown in thisslide. These interfacesconsists

ofthe nuts,and bolts,chips and wires ofthe hardware architecturedescribedpreviously.With

regard to the model, itconsistsofallthe hardware to hardware interfaceswithin each processing

element, as well as the hardware interfacestothe externalenvironment by way ofthe core

network, localcommunications or directinterfaces.The focusin thisstandard ison GAPs which

providethe greatestflexibilityin configuringthe system to accomplish differentpurposes in

avionics.The GAP includeshardware components to interfaceto a core network, to interfaceto

localbuses,to processapplications,and optionalcomponents forother purposes (such as serial

input and output to directanalog and discretelinks).As implied by the darker shading on the

GAP, the GAP isthe focusofeffortsto standardizethe hardware processorsupport due to its

generalpurpose nature. An example ofsuch hardware interfacesisshown below.

Core Network

Network Interface

Preoeolor Cerd

Backplane Interface

Board Interface

5

Hardware-to-System Software

/ Ir Physical Interfaces
0,,,,,,_,, o_._ Lockheed

Class ADollcation Platform Hardware to Service Driver_-

S_mm

HW4W
Imarf_--

_m

EP-DRVRm
tntwt_

CORE NETWORK

LOCAL COMMiJHICATIONJ

Wrq_ 1_ Ilmlmd: I_Wm

Notes:

The hardware to system sol, ware interfaces are shown in this slide. These consist of the interfaces

from the system sol, ware drivers (i.e. in the OS, data system manager, etc.) to the hardware

instruction set architecture (ISA) and register usage. With regard to the model it is internal to each _v
processing element. The grayed out elements are a repeat of the previous figure; the white elements

represent the new capabilities and interfaces added by this class. This class provides low level
software drivers to interact with the hardware for each of the processor types (EPs, SAPs, and GAPs).

The drivers are (obviously) hardware dependent, but this enables the architecture to begin to partition
out the hardware dependencies, which is a key in providing for technology upgradability in the future.
All the drivers for all processor types are contained in the Space Data System Services (SDSS) sub-
architecture.

The system services software for the GAP are organized into five categories. These categories are the
Data System Manager, Data Base Manager, Standard Data Services Manager, Operating System, and
Network ServicesManager. Note the naming convention used forthe GAP hardware to the OS

drivers,i.e.,GAP-DRVR. Thi• Ain_lelinkwillbe broken open inthe next figureto show itscomponent

elements. An example (drawn from the Space StationFreedom) ofsol,ware driverinterfacesisshown
below.

• r •

C lllee 2

6

m41--,

41,--

IIR

"0

e-
.X

--I

z_c

eh --

:.: _i ¸

al G)

8

c_

/ System Software-to-Software
(Local) Physical Interfaces

1B _ FI_C,Pff _TA SYS_EMII _EP/_NT

Class 3. O0eratino System to Other Codo

(i.e.. Services or ADDIIcations)

Lockheed

mW4, lm _ mill

\

Notes:

• The system software drivers to local system software service interfaces are shown in next. These consist

of the Input/Output handler calling conventions and context switch conversions between the system
software drivers on one processing element interfacing with one or more system software services to _,
provide for local information exchange. The grayed out parts of the figure represent the material
covered in Classes I and 2, the white parts of the figure are the new material added in Class 3. Since

Class 2 provided the software drivers to isolate the hardware, Class 3 provides the remainder of the local

soi_ware services needed to operate the computer system. They all fall into the Space Data System
Services (SDSS) sub-architecture, consisting of the Data System Manager, Data Base Manager,

Standard Data Services Manager, Operating System, and Network Services Manager. Class 3 provides
all remaining services and the interfaces between the local services for effective local interprocess
communications and support. These interfaces are physical interfaces because they enable software
service code to interact with software service code in other local entities. Class 3 interfaces meet derived

requirements based on the need of an application to support users.

• The naming convention (e.g., OS-SW) is shown in this figure to indicate all the OS links both down to OS

drivers and up to other high level processes will be identified explicitly by their names. An example
from the Space Station Freedom project is shown below of these interfaces.

C lisa $

Class 5. Services to AD

System Software-to-Applications
Software Physical Interfaces

"_'_._ o,,,,_,_, _,_,_r Lockheed

)lications

1

ISER_CES i

\

HARO
WARE

Notes:

• The system software services to applications software interfaces are shown here. This is the physical
interface wi_ a processing element between the application software and the system software

(language bindings/specification) to allow provision of needed services. The grayed out parts of the
figure represent the material covered in Classes I to 4, the white parts of the figure are the new
material added in Class 5. Since Classes I to 4 isolated the hardware and soitware services in all the

processors, Class 5 adds the interface capability for services in any processor to interact with an

application executing in the processor, this provides the basic multi-processor capability to meet actual

user requirements in processing. Applications can operate in any GAP, with potential partitioning of

an application across multiple GAPs. Similarly, applications can operate in any SAP or any EP. These
interfaces are physical interfaces because the applications soRware code is interacting with the service
software code. Class 5 interfaces meet derived requirements based on the need of an application to

support users in a multi-processing environment.

• The naming conventions identify the higher level interfaces which will be specified in more detail in
lower level diagrams. An example of these interfaces from Space Station Freedom is shown below.

C lees |

8

System Software-to-System Software
/ Lo lical Interfaces

jP _., 0.,.,_,_.,_._,_., Lockheed

Class 4. Services to Other Services Data Transfer__

\

O Latorai Intorfscee between Sorvice Using Date and Service Generating Data "ll• No Logical Architoctuml Diffomnce between Local end Remoto Services Access |

• Moots Requiromonts for Applications Support - A Oerivod Roquimmont

w_,4k tlflllLt _ I_tNII

Notes:

• The system soilware services to remote system software interfaces are shown in this slide. This is the

peer to peer interface of system soi>cware in one processing element (GAP,SAP or EP) interfacing with

the system sol, ware in an external processing element to coordinate operations in a distributed

environment. The grayed out parts of the figure represent the material covered in Classes I to 3, the

white parts of the figure are the new material added in Class 4. Since Classes i to 3 isolated the

hardware and sol, ware services in each processor, Class 4 adds the interface capability for services in

one processor to interact with services in another processor;, this is the heart of multi-processor

capability needed in modern space avionics systems. GAP services can interact with EP and SAP

services and other GAP services. These interfaces are logical interfaces because the service originating

data is interacting with the service that will use the data (i.e., that will transform the data into another

form for a purpose). Class 4 interfaces meet derived requirements based on the need of an application

to support users in a multi-processing environment.

• The GAP to services interfaces are defined by the naming convention as GAPSRV- to indicate that GAP
services would be specified by the standard interface specification, and could be broken out by

subsequent lower level charts. An example from the station is shown below.

9

Applications Software-to-Applications
-Software Logical Interfaces

Class 6. AaDIIcatlons to ADollcations Loalcal Data TrlmMm't

sw
SERVICES

HARD
WARE

• No Identified Standerds for Interh_ee between Ue_ and Source '_

• Meets System User Requirements Directly |
• Can Apply to System/Vehicle |nterfecet and Provide overMI il

Command & Operational Conly¢4

rJNImq_e, _m m j

Notes:

The applicationssoi_ware toapplicationssoi_ware interfacesare shown. This peer to peer information

exchange and coordinationinterfacebetween applicationsoRware modules. Applicationsdo not

communicate directly;,hence thisisa logicalinterface.All communication isthrough a Class 5 (P)

standard interfaceto System Serviceswhich providesthe physicalcommunications path between

applicaCions.This interfacemay be between applicationswithin a processingelement or between

applicationsin separate processingelements. The grayed out partsofthe figurerepresentthe material

covered in Classes I to 5,the white parts ofthe figureare the new material added in Class 6. Since

Classes I to 5 isolatedthe hardware, soltware servicesand applicationsin any processor,Class 6 adds the

interfacecapabilityforan applicationin any processorto interactwith another applicationexecutingin

any processor;thisprovidesthe basicmulti-process.orcapabilityto meet multiple actualuser
requirements in processing.Applicationscan operate in any processor(i.e.,GAP, SAP or EP), with

cooperatinginteractionsto support the needs ofthe users. The interfacesare logicalinterfacesbecause

the applicationoriginatingdata isinteractingwith applicationsthat willuse the data (i.e.,that will

transform the data intoa form usefulto the user or to another applicationfora user'sultimate purpose).

Class 6 interfacesmeet user and derivedrequirements based on the need ofmultiple applicationsto

support users in a multi-processingenvironment. The example below isprovided from the station.

C lass II

Notes:

Status and Plans
Lockheed

Review by Space Avionics Architacture Panel

Planned for presentation to other forums

• PubUshed in AFCEA's Signal Magazine (September)

Mission rand Safety Cdttcai System Symposium (October 20)

• SiMTEC invitation (November 4)

• SATWG end SAAP Soltwlre Workehol} (November 16)

• SAE invitation (November)

Enhancements in the works:

O FDIRFIM requirements to be Incorporated

Applied to prolects:

0 Used in Artemis Common Lunar lander space data system

0 Beginning to build Statlamato dynamic model (simulation)

0 Beglnnblg polnt for Institutional analysis and design of

flight data systems

• The Reference Architecture Model Must Be Based on Standards

• It Must Span Platforms for All Missions and Operational Requirements

• A Space Generic Open Avionics Architecture Must be Adaptable

• Avionics Control Structure Must be Integrated in an Architecture

• Support Tailoring to Multiple Missions

• The advanced avionics architectures must fit and extend the POSIX Open Systems
Environment model

• The space genedc avionics functional architecture was successfully applied to the
Common Lunar Lander, with a preliminary design for the data system in 2 days

• The architecture interface model makes an explicit and rational model of how
hardware and software interfaces should be defined

• A common advanced architecture for all future space platforms is feasible and
achievable

Notes:

Addenda

Lockheed

13

P'_ PAGE IILANK I't_T F1N.MED

S Examples of Architecture

Reference Models
__m _G_ _TA 3_IlTDM 0(FSRft4ENT

• International Standards OrganizstJon (ISO) Open Systems
Interconnect (OSI) 7 Layer Reference Model

• Natlonef Institute of Standards and Technology (NIST) Portable
Operating System (POSlX) Open Systems Environment (OSE)
Referer¢o

• Proposed _o GerNwlc Open Avi_ics ArchltG_'turo (_OAA)

Tho oblectlvo of a roforenco modol Is to Identify
INTERFACES

befween
FUNCTIONAL BLOCKS

so II_t oxlst_g and futuro
STANDARDS

can be applied at the
INTERFACES

In m systematic way to meet mission requirements

Notes:

Lockheed

14

Notes:

Relationships between
/ OSI and SGOAA Models

__=_,, _,_,,_,,_=.0_.,_==._ Lockheed
Omm Svslmmm Intmcoi_wct

(OSl_ Model Protocol Laver1

EXTERNAL ._

ENVIRONMENT

iNTERFACE

\

The POSIX Open System Environment (OSE) Reference Model isthe basisforthe genericand open

avionicsarchitecturemodels, and forapplicationsoftware portabilityand interoperability.Itcan be

relatedtothe Open System Interconnect(OSI) model and the SGOAA interfacemodel as shown in

-_ thisslide.The OSE model communications linkprotocolsare definedin detailby the OSI model for

peer-to-peercommunications. The OSE model interfaceclassesare definedin detailby the

SGOAA.

• The OSE Reference Model enables applicationsoftware portabilityat the source code leveland

applicationsoftware and system serviceinteroperabilitybetween heterogeneous systems.
DeRnition ofentitiesand interfacesbased on the OSE model can facilitaterequirements definition

fordesigns which have the open and genericcharacteristicsneeded.

• There are three types ofentitiesused in the OSE Model: ApplicationSoftware,Application

Platform and External Environment. There are two types ofinterfaces:the ApplicationsProgram

Interfaceand the External Environment Interface.

• The OSI Reference Model isa Network ServicesModel. Network Serviceisonly one resourceof

many competing resource processesprovided by both the POSIX and SGOAA Models. Applications

gain accesstoPOSIX Network Servicesvia the POSIX API Communications ServicesInterfaceand

toSGOAA Network Servicesvia the SGOAA Class 5 Interface(ApplicationsSoft-ware-to-System

ServicesSol%ware). In the OSI model, applicationsgain accessto Network Servicesvia an

applications-to-servicesinterface.Interfacesprovided by Network Servicesmust be open network

interfaces,protocolindependent and provide for network protocolinteroperability.The POSIX OSE

referencemodel focuseson the requirements ofapplicationportabilityand system interoperability

at the source code levelby addressing these objectivesatthe ApplicationsProgram Interface(API)

and atthe External Environment Interface(EEI). InternalApplicationPlatform Interfacesare not

addressed.

• The OSI model may be mapped intojustthe communications linksofthe POSIX.OSE model API

and the EEl to definethe communications protocols.The SGOAA model may be mapped intothe

user,communications, information,and systems serviceslinksofthe POSIX OSE model to define

the content ofallthe interfaces.Thus, the three models are complementary. 15

V

